LOCAL SCALE CLIMATE CHANGE SCENARIOS

Pedro Garrett 2009

Mid 1970s

Early climate models were limited. They only included carbon dioxide, heat from the sun (radiation) and rain, but not clouds.

Mid 1980s

Clouds, land surface and ice were added into the mix in the 1980s. Different types of land behave differently; deserts and ice are more likely to reflect radiation, and forests are more likely to absorb it.

1990 - IPCC's first report

A simple model of the oceans now joins the picture, as the first IPCC report comes out. To begin with, only the top layer of the sea was modeled.

1996 Second Assessment Report

More sophisticated models of the ocean are added. Volcanoes are also shown. Their eruptions throw particles into the atmosphere, which can block sunlight and temporarily reduce global temperatures.

2001 Third Assessment Report

By bringing the carbon cycle into the picture, the different ways C02 is stored and released into the atmosphere gives greater realism to climate models. Understanding of the oceans is deepened

2007 Fourth Assessment Report

Chemical reactions in the atmosphere join the climate models; they are now produced using computing power 256 times more powerful than that available in the 1970s.

SIM-CCIAM

THE DELTA CHANGE METHOD

LOCAL CLIMATE CHANGE SCENARIOS

GCM control run				
	pany.			2
*			ζ.	~ *
*	X	i.	<u>,</u>	
	+	5		

TEMPERATURE			
	JANEIRO		
1961	10		
1962	13		
1963	12		
1964	13		
1965	12		
1990	11		

GCM Scenario

TEMPERATURE		
	JANEIRO	
2041	12	\sum
2042	15	
2043	10	
2044	14	
2045	16	
2060	13	

Average =

12ºC

Average = 14°C

 $\Delta \mathbf{T} = \mathbf{T}_{2041-2060} - \mathbf{T}_{1961-1090}$

The anomaly is then added to the observed dataset from the meteorological station

What will happen to the daily distribution of temperature in January???

Is it prudent to assume that the daily distribution of the data is going to maintain???

What will happen to the daily distribution of temperature in January???

Is it prudent to assume that the daily distribution of the data is going to maintain???

IMPORTANT CONSIDERATIONS WHEN DEALING WITH THE DELTA CHANGE METHOD...

1 - Witch grid box to choose from the Global Circulation Model?

Is common to use one or even several grid boxes to find the optimal relationship Between large scale parameters and local climate variables

IMPORTANT CONSIDERATIONS WHEN DEALING WITH THE DELTA CHANGE METHOD...

- 1 Witch grid box to choose from the Global Circulation Model?
- 2 How do we validate these results?
- 3 should we use this data to calculate extreme weather events?

this method assumes that the variability of the data is going to maintain

- 4 Be aware when using this method to calculate:
 - heat waves cold waves precipitation regimes

DYNAMICAL AND STATISTICAL DOWNSCALING LOCAL CLIMATE CHANGE SCENARIOS

DYNAMICAL DOWNSCALING

DYNAMICAL DOWNSCALING

PRECIS regional climate model (Providing REgional Climates for Impacts Studies) 100-by-100 gridbox domain 2.8 GHz machine 30 year simulation

4.5 months

OUTPUT FROM GCM:

SNOW AMOUNT AFTER TIMESTEP NET DOWN SURFACE SW FLUX BELOW TOTAL DOWNWARD SURFACE SW FLUX HICE INC. DUE TO DIFFUSION SURFACE & B.LAYER HEAT FLUXES SURF & BL TOTL MOISTURE FLUX **TEMPERATURE AT 1.5M** SPECIFIC HUMIDITY AT 1.5M **RELATIVE HUMIDITY AT 1.5M 10 METRE WIND SPEED** LARGE SCALE RAINFALL RATE LARGE SCALE SNOWFALL RATE CONVECTIVE RAINFALL RATE CONVECTIVE SNOWFALL RATE TOTAL PRECIPITATION RATE SOIL MOISTURE CONTENT LARGE SCALE RAINFALL RATE LARGE SCALE SNOWFALL RATE

SIM-CCI/

DYNAMICAL DOWNSCALING

STRENGTHS	WEAKNESS
 Spatial resolutions between 10-50 km 	 Dependent on the realism of GCM boundary forcing
 Responds in physically consistent ways to different external forcing 	 Choice of domain size and location affects the results
 Resolve atmospheric processes such as orographic precipitation 	 Requires significant computing power
 Consistency with the GCM 	 Initial boundary conditions affects the results
	 Choice of cloud/convection scheme affects results
	 Not readily transferred to new regions or domains

STATISTICAL DOWNSCALING

There are deterministic methods (eg multiple linear regressions and neural networks) which assumes a relationship between large scale variables and the local climate, such as precipitation and temperature.

Stochastic methods can reproduced climatic time series statistically identical to those observed.

There are also hybrid methods that are the combination of the two earlier. In this case transfer equations are used to determine the relationship between large scale variables with local weather and then stochastic methods are used to determine its intensity.

STOCHASTIC METHOD

Matrix with the difference between the control run and future scenario

	Monthly rain	Wet spell	Dry spell	Max temperature	Min temperature	Temp. Standard Deviation
Jan	0.92	0.82	1.13	1.15	1.14	1.00
Feb	1.28	1.28	0.82	1.17	1.16	1.18
Mar	1.14	1.08	1.05	1.17	1.15	1.11
Apr	0.95	0.67	0.96	1.15	1.14	1.20
May	0.65	0.79	1.13	1.13	1.13	1.46
Jun	0.72	0.84	1.42	1.12	1.13	1.13
Jul	1.14	1.26	0.98	1.11	1.11	1.20
Aug	0.83	1.06	1.15	1.11	1.11	1.16
Sep	0.56	0.75	1.26	1.12	1.11	1.15
Oct	0.77	0.85	1.09	1.13	1.13	1.13
Nov	0.95	0.87	0.86	1.13	1.13	1.12
Dec	1.19	0.99	1.00	1.14	1.14	1.10

Results for Lisbon

HYBRID METHOD (DETERMINISTIC & STOCHASTIC)

Daily observed climate data (30 years)	Daily NCEP predictors (30 years)	Precipitation (pp)	Maximum temperature (Tmax)	Minimum temperature (Tmin)
	*	Surface zonal velocity	Surface zonal velocity	Surface airflow strength
Selection and the NCE	d calibration with P predictors	850 hPa zonal velocity	500 hPa geopotential height	Surface vorticity
Validation		850 hPa air flow strength	850 hPa zonal velocity	Surface specific humidity
Replace the l	NCEP predictors	850 hPa geopotential height	Mean temperature at 2m	Mean temperature at 2m
with GCI	M predictors	Near surface relative humidity		
se	enario	Results for Lisbor	1	

VALIDATION FOR THE MEAN:

	Tmin		Tmax		Precipitation	
	SDSM	LARS-WG	SDSM	LARS-WG	SDSM	LARS-WG
Jan	0.828	0.039	0.828	0.796	0.014	0.076
Feb	0.689	0.078	0.593	0.215	0.020	0.995
Mar	0.433	0.682	0.047	0.947	0.112	0.007
Apr	0.575	0.500	0.101	0.206	0.138	0.002
May	0.596	0.176	0.303	0.065	0.327	0.813
Jun	0.825	0.000	0.382	0.002	0.151	0.862
Jul	0.098	0.995	0.034	0.341	0.323	0.525
Aug	0.069	0.011	0.033	0.418	0.623	0.656
Sep	0.561	0.000	0.663	0.153	0.826	0.460
Oct	0.502	0.032	0.341	0.024	0.215	0.360
Nov	0.715	0.216	0.691	0.035	0.012	0.372
Dec	0.426	0.103	0.771	0.000	0.025	0.053

Test results (p values) of the Mann-Whitney U test for the difference of means of the observed (1981-1990) and downscaled daily Tmin, Tmax and precipitation at the 95% confidence level

VALIDATION FOR THE VARIANCE:

	Tmin		Tmax		Precipitation	
	SDSM	LARS-WG	SDSM	LARS-WG	SDSM	LARS-WG
Jan	0.167	0.591	0.771	0.003	0.441	0.523
Feb	0.261	0.482	0.033	0.158	0.705	0.893
Mar	0.224	0.418	0.735	0.045	0.905	0.099
Apr	0.326	0.771	0.509	0.240	0.696	0.685
May	0.265	0.792	0.695	0.363	0.917	0.318
Jun	0.844	0.065	0.674	0.764	0.523	0.513
Jul	0.164	0.125	0.530	0.505	0.310	0.383
Aug	0.244	0.000	0.687	0.114	0.563	0.771
Sep	0.003	0.110	0.853	0.397	0.336	0.967
Oct	0.133	0.147	0.495	0.728	0.449	0.614
Nov	0.701	0.028	0.470	0.832	0.500	0.965
Dec	0.002	0.979	0.483	0.565	0.613	0.042

Test results (p values) of the Brown-Forsythe test for the difference of variances of the observed and downscaled daily Tmin, Tmax and precipitation at the 95% confidence level

IMPORTANT CONSIDERATIONS WHEN VALIDATING THE RESULTS...

Many statistical methods depend on the assumptions that the data have a nearly normal distribution and are uncorrelated when collected over regular time periods. If these assumptions are not verified the classical statistical methods may be misleading and a non-parametric approach produces more robust results.

To assess the uncertainty of the results at the 95% confidence intervals you can use a bootstrapping non-parametric approach. Bootstrapping is a method of estimating the properties of an estimator, such as the mean and variance, by measuring its properties when sampling from an approximating distribution.

IF THE MODEL CAN REPRESENT THE OBSERVED CLIMATE THEN WE ARE READY TO BUILD CLIMATE CHANGE SCENARIOS

A2a SRES SCENARIO FOR LISBON BETWEEN 2041 and 2070 (LISBOA GEOFISICA)

Total monthly precipitation over the observed 1961-1990 and the 2041-2070 period

90th percentile of precipitation over the observed 1961-1990 and the 2041-2070 period

Spite off both models having similar trends it is important to notice that between July and October the accumulated monthly precipitation and the peaks over the 90 percentile are always smaller in the stochastic method and higher in the remaining months then the hybrid method.

A2a SRES SCENARIO FOR LISBON BETWEEN 2041 and 2070 (LISBOA GEOFISICA)

Mean wet spell length over the observed 1961-1990 and the 2041-2070 period

Peaks over the 90th percentile over the observed 1961-1990 and the 2041-2070 period

The same observations is possible to find between May and October for the monthly number of wet days and the number of peaks over the 90 percentile. In the remaining months the stochastic method presents higher values then the hybrid method.

A2a SRES SCENARIO FOR LISBON BETWEEN 2041 and 2070 (LISBOA GEOFISICA)

Maximum temperature over the observed 1961-1990 and the 2041-2070 period

Minimum temperature over the observed 1961-1990 and the 2041-2070 period

STRENGTHS	WEAKNESS
•Station–scale climate information from GCM–scale output	 Dependent on the realism of GCM Requires high quality data for model Calibration
 Cheap, computationally undemanding and readily transferable Ensembles of climate scenarios permit 	 Predictor-predictand relationships are often non-stationary
risk and uncertainty analyses	 Choice of predictor variables affects Results
	 Low–frequency climate variability problematic

PROJECT MAIN GOAL:

Construction of **long – term** environmental and socio-economic scenarios

Toxicity assessment for **mixtures** of Substances

Health risk assessment for **selected groups** of population

Defining **uncertainty** bounds and sensitivity analyses

MAIN GOALS FOR THE PORTUGUESE CASE STUDY:

Evolution of air pollution,

Consequences of **climate change** and emissions of air pollutants in **HUMAN HEALTH.**

THE END

pedro_garrett@netcabo.pt

Pedro Garrett 2009