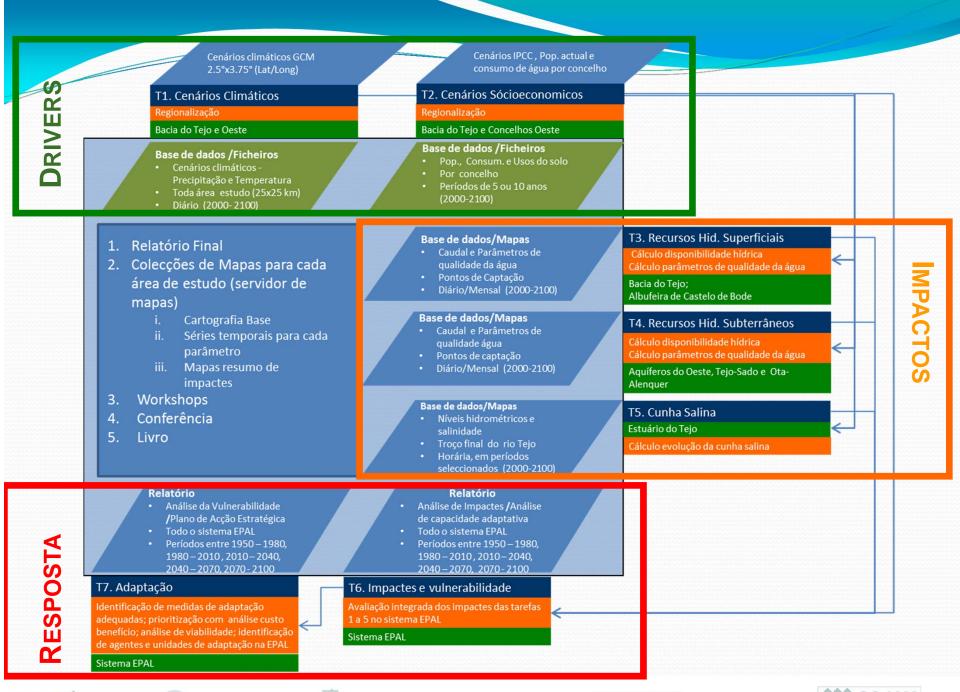
ADAPTACLIMA - EPAL

Adaptar o Ciclo Urbano da Água a Cenários de Alterações Climáticas - EPAL

6 Julho 2011

PRÓXIMOS PASSOS


 Projecto ADAPTACLIMA-EPAL visa dotar a Empresa Portuguesa das Águas Livres (EPAL) de uma estratégia de adaptação a médio e longo prazo cujo planeamento e implementação permita diminuir as vulnerabilidades das suas actividades às alterações climáticas

Cronograma

ADAPTACLIMA S

Data início: Outubro 2010

Data fim: Março 2013

	2010	2011	2012	2013
T0 - COORDENAÇÃO	Out			Março
T1 - CENÁRIOS CLIMÁTICOS	Nov	Jun		
T2 - CENÁRIOS SOCIOECONÓMICOS	Nov	Jun		
T3 - MODELAÇÃO REC. HÍDR. SUPERFICIAIS		Abr	Jan	
T4 - MODELAÇÃO REC. HÍDR. SUBTERRÂNEOS		Abr	Jan	
T5 - MODELAÇÃO ESTUÁRIO/CUNHA SALINA		Abr	Jan	
T6 - IMPACTOS E VULNERABILIDADES		Out	Jul	
T7 - ADAPTAÇÃO			Fev	Fev

EPAL.

T3. Recursos Hídricos Superficiais UA/FCT-UNL

Bacia do Tejo (Captação Valada)

Albufeira do Castelo de Bode

Aplicação do Modelo SWAT para cálculo da disponibilidade hídrica

Estimar alterações da disponibilidade hídrica dos rios Zêzere (montante da barragem de Castelo de Bode) e Tejo (montante da captação de Tejo-valada)

Caudal afluente na Foz do Rio tejo / Por captação / Diário/Mensal

Caudal afluente na Barragem / Por captação / Diário

Aplicação do Modelo SWAT para cálculo de descarga de nutrientes

Estimar alterações na descarga de nutrientes para a bacia hidrográfica do rio Zêzere

Carga de nutrientes N e P / Por captação / Diário/Mensal

Modelo CE-QUAL-W2

Estimar alterações na qualidade da água na barragem

Qualidade da água na albufeira / Distribuição longitudinal/vertical, em toda a albufeira / Diário/Mensal

T4. Recursos Hídricos Subterrâneos IST

Aquífero Tejo/Sado (margem esquerda)

Aquífero Ota-Alenquer Nascente dos Olhos de Água - Alviela

Aquífero de Torres Vedras Aquífero das Caldas da Rainha

Desenvolvimento de modelo estatístico ou de caixa (para a Nascente dos Olhos de Água - Alviela) entre variabilidade climática e disponibilidade hídrica

Definir relação entre variabilidade climática e disponibilidade de água nesta região para estimar esta variável para os cenários de alterações climáticas

Desenvolvimento de modelo numérico aquífero

Simular o comportamento do aquífero em cenários de variabilidade da recarga

Avaliação e análise da tendência da disponibilidade hídrica subterrânea para a série temporal passada disponível e para os diferentes cenários climáticos / Pontual (captação) / Diário/Mensal

Desenvolvimento de modelo estatístico ou de caixa (para a Nascente dos Olhos de Água - Alviela) entre variabilidade climática e qualidade da água

Definir relação entre variabilidade climática e qualidade nesta região para estimar esta variável para os cenários de alterações climáticas

Desenvolvimento de modelo numérico aquífero

Determinar a relação entre as variáveis climáticas e interacção água/rocha, com base numa análise hidrogeoquímica

Avaliação e análise da tendência da qualidade da água para a série temporal passada disponível e para os diferentes cenários climáticos / Pontual (captação) / Mensal (série temporal passada)/A definir (série futura)

T5. Intrusão salina no Rio Tejo FCT-UNL

Troço final do Rio Tejo (Captação Valada)

Desenvolvimento de modelo baseado nas equações de Saint-Venant

Simular as salinidades, as alturas de água e as velocidades médias do escoamento para diversos cenários de exploração do modelo, contemplando possíveis subidas do nível médio das águas do mar e eventuais reduções das afluências médias provenientes do rio Tejo

Níveis hidrométricos e Salinidade / Resol. Espacial a definir / Horário para períodos seleccionados ao longo do século

T6/T7. Impactos, Vulnerabilidade e Adaptação SIM/CCIAM

Sistema EPAL

Exposição Climática e Socioeconómicos

Avaliar os impactos no recurso água em cenários de alterações climáticas e socioeconómicos.

Análise de Impactos na disponibilidade e qualidade de água / Para todas as captações consideradas

Sensibilidade e capacidade adaptativa do Sistema EPAL

Avaliar a sensibilidade sistema EPAL a variações e alterações climáticas e actual capacidade adaptativa

Análise da Capacidade adaptativa do sistema EPAL / Para todas as captações consideradas

Vulnerabilidade

Cruzar a sensibilidade do recurso água nos casos de estudo com a exposição a que vai estar sujeito em cenários de alterações climáticas com a capacidade adaptativa actual do sistema EPAL.

Análise da Vulnerabilidade do sistema EPAL / Para todas as captações consideradas

Adaptação

Compilar e prioritizar de medidas de adaptação. Definir plano de acção de adaptação do ciclo urbano da água do sistema EPAL a cenários de alterações climáticas.

Plano de acção estratégico de adaptação do ciclo urbano da água do sistema EPAL a cenários de alterações climáticas / Todo o Sistema EPAL

In: Proc. 1st Internat. Conf. on Adaptive and Integrative Water Management (CAIWA 2007), Basel

Impact of socio-economic development and climate change on water resources and water stress

Lucas Menzel*1, Martina Flörke1, Alejandra Matovelle1, Joseph Alcamo1

¹ Center for Environmental Systems Research (CESR), University of Kassel Kurt-Wolters-Str. 3, 34125 Kassel, Germany menzel@usf.uni-kassel.de

*Corresponding author

ABSTRACT

The global water model WaterGAP was applied to analyze the combined effects of climate change and socio-economic driving forces on the future distribution of the world's freshwater resources, the human water demand and the occurrence of water stress. A total number of four scenarios was applied, the IPCC A2 and B2 scenarios from the 'Dialogue on Water and Climate' project and the Order from Strength and Techno Garden scenarios from the 'Millennium Ecosystem Assessment'. The results clearly demonstrate that the effects of population growth, economic development, increase in water use efficiency and other driving forces on water stress can not be neglected in comparison with the impacts of climate change. Between current conditions and the 2050s, a strong increase in water stress is projected for major parts of the globe. The four scenarios show similar trends, however differences occur between the future spatial extent of water stress (as a consequence of different scenario assumptions). The principal cause of increasing water stress is growing water withdrawals while decreasing water stress (where it occurs) is mainly related to increasing water availability due to climate change.

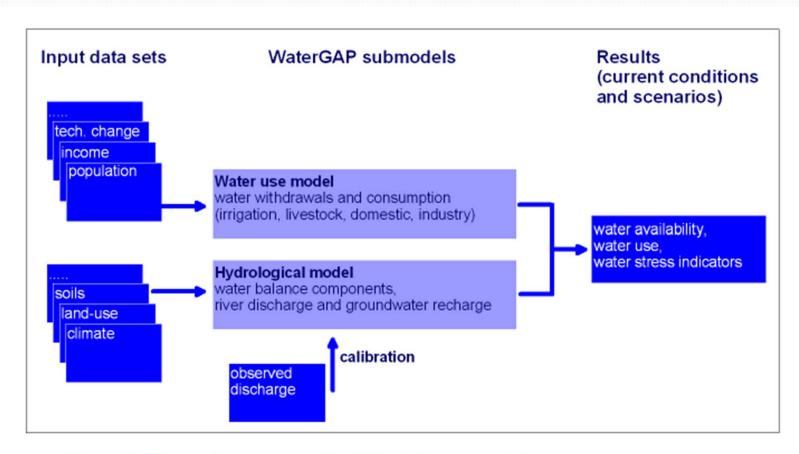


Figure 1. Schematic overview of the WaterGAP model, its input requirements and model results

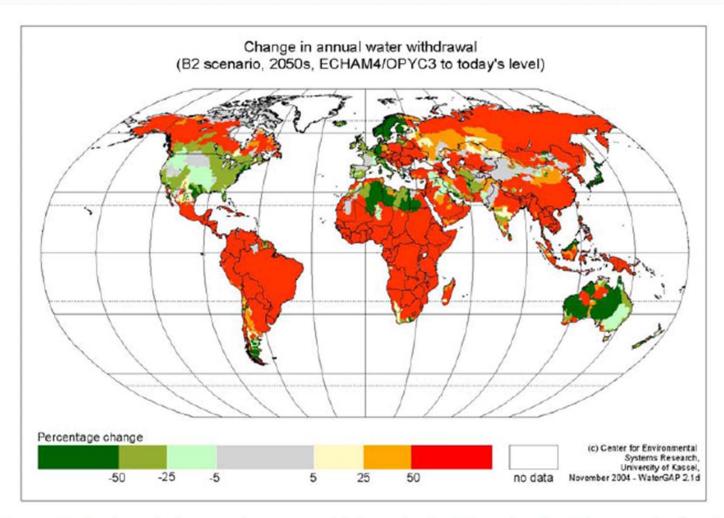


Figure 9. Projected changes in water withdrawals (in %) under the B2 scenario for the period around 2050, based on climate change input from the ECHAM4 model and simulations with WaterGAP

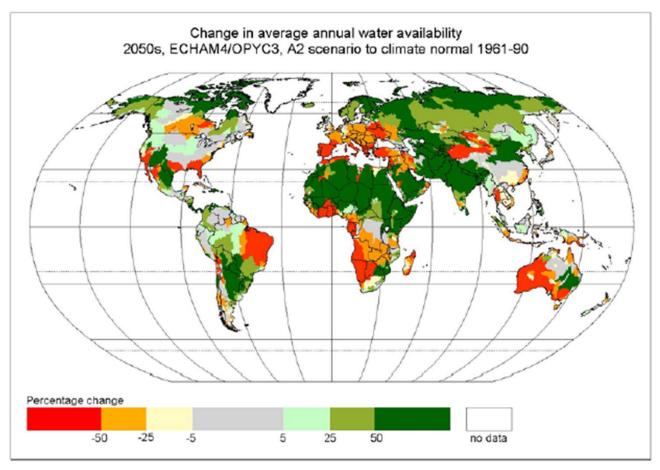


Figure 6. Change in average annual water availability (in %) between the climate normal period (1961-1990) and the 2050s under the A2 scenario, based on climate change input from the ECHAM4 model and simulations with WaterGAP. Note that a strong projected increase in water availability (dark green colour) occurs in today's dry parts of Northern Africa and the Near East. Therefore, an increase of 50% or more still represents comparatively low values of water availability

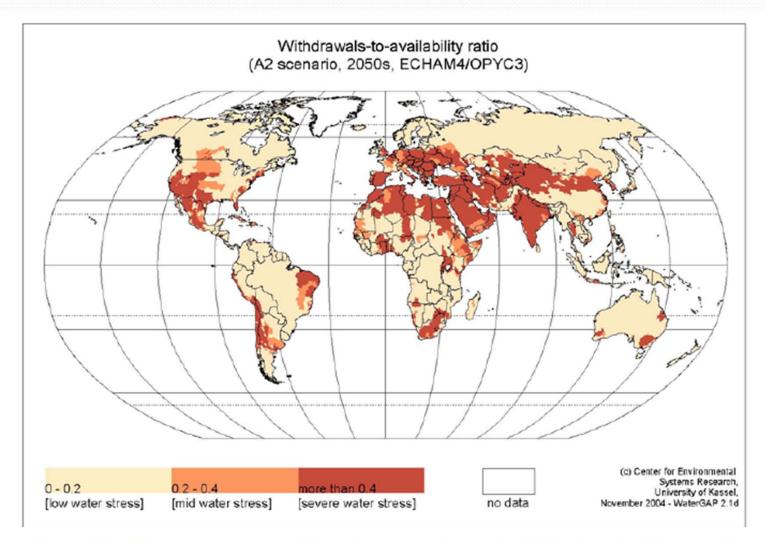


Figure 10. Water stress expressed by the w.t.a ratio in the 2050s for the A2 scenario (climate change input from the ECHAM4 model and simulations with WaterGAP)

Obrigado pela vossa atenção!

6 Julho 2011

